

ADVANCED SUBSIDIARY GCE UNIT MATHEMATICS

Further Pure Mathematics 1 THURSDAY 18 JANUARY 2007

Afternoon

4725/01

Time: 1 hour 30 minutes

Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are reminded of the need for clear presentation in your answers.

This document consists of 4 printed pages.

© OCR 2007 [T/102/2698]

OCR is an exempt Charity

[Turn over

2

- 1 The matrices **A** and **B** are given by $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} a & -1 \\ -3 & -2 \end{pmatrix}$.
 - (i) Given that $2\mathbf{A} + \mathbf{B} = \begin{pmatrix} 1 & 1 \\ 3 & 2 \end{pmatrix}$, write down the value of a. [1]

(ii) Given instead that
$$AB = \begin{pmatrix} 7 & -4 \\ 9 & -7 \end{pmatrix}$$
, find the value of *a*. [2]

2 Use an algebraic method to find the square roots of the complex number 15 + 8i. [6]

3 Use the standard results for
$$\sum_{r=1}^{n} r$$
 and $\sum_{r=1}^{n} r^3$ to find

$$\sum_{r=1}^n r(r-1)(r+1),$$

expressing your answer in a fully factorised form.

[6]

- 4 (i) Sketch, on an Argand diagram, the locus given by $|z 1 + i| = \sqrt{2}$. [3]
 - (ii) Shade on your diagram the region given by $1 \le |z 1 + i| \le \sqrt{2}$. [3]

5 (i) Verify that
$$z^3 - 8 = (z - 2)(z^2 + 2z + 4)$$
. [1]

- (ii) Solve the quadratic equation $z^2 + 2z + 4 = 0$, giving your answers exactly in the form x + iy. Show clearly how you obtain your answers. [3]
- (iii) Show on an Argand diagram the roots of the cubic equation $z^3 8 = 0.$ [3]
- 6 The sequence u_1, u_2, u_3, \ldots is defined by $u_n = n^2 + 3n$, for all positive integers n.
 - (i) Show that $u_{n+1} u_n = 2n + 4$. [3]
 - (ii) Hence prove by induction that each term of the sequence is divisible by 2. [5]
- 7 The quadratic equation $x^2 + 5x + 10 = 0$ has roots α and β .
 - (i) Write down the values of $\alpha + \beta$ and $\alpha\beta$. [2]
 - (ii) Show that $\alpha^2 + \beta^2 = 5$. [2]
 - (iii) Hence find a quadratic equation which has roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$. [4]

4725/01 Jan07

3

8 (i) Show that $(r+2)! - (r+1)! = (r+1)^2 \times r!$.

(ii) Hence find an expression, in terms of *n*, for

$$2^{2} \times 1! + 3^{2} \times 2! + 4^{2} \times 3! + \ldots + (n+1)^{2} \times n!.$$
 [4]

[3]

[1]

(iii) State, giving a brief reason, whether the series

$$2^2 \times 1! + 3^2 \times 2! + 4^2 \times 3! + \dots$$

converges.

- 9 The matrix C is given by $C = \begin{pmatrix} 0 & 3 \\ -1 & 0 \end{pmatrix}$.
 - (i) Draw a diagram showing the unit square and its image under the transformation represented by C. [2]
 The transformation represented by C is equivalent to a rotation, R, followed by another transformation, S.
 (ii) Describe fully the rotation R and write down the matrix that represents R. [3]
 - (iii) Describe fully the transformation S and write down the matrix that represents S. [4]
- 10 The matrix **D** is given by $\mathbf{D} = \begin{pmatrix} a & 2 & 0 \\ 3 & 1 & 2 \\ 0 & -1 & 1 \end{pmatrix}$, where $a \neq 2$.

(i) Find
$$D^{-1}$$
. [7]

(ii) Hence, or otherwise, solve the equations

$$ax + 2y = 3,3x + y + 2z = 4,- y + z = 1.$$
 [4]

1.	(i) <i>a</i> = -3	B1	1	State correct value
	(ii) $2a - 3 = 7$ or $3a - 6 = 9$	M1		Sensible attempt at multiplication
	<i>a</i> = 5	A1	2	Obtain correct answer
			3	
2.		M1		Attempt to equate real and
				imaginary parts of $(x + iy)^2$ and 15
	$x^2 - y^2 = 15$ and $xy = 4$	A1 A1		+8i
		M1		Obtain each result
		DM1		Eliminate to obtain a quadratic in x^2
	$\pm (4 + i)$	A1	6	or y^2
			6	Solve to obtain $x = (\pm)4$, or $y =$
				(±)1
				Obtain only correct two answers as complex numbers
3.		M1		Expand to obtain $r^3 - r$
		M1		Consider difference of two standard results
	$\frac{1}{4}n^2(n+1)^2 - \frac{1}{2}n(n+1)$	Al		Obtain correct unfactorised answer
		M1		Attempt to factorise
		A1		Obtain factor of $\frac{1}{4}n(n+1)$
	$\frac{1}{4}n(n-1)(n+1)(n+2)$	A1	6	Obtain correct answer
			6	
4.	(i)	B1		Circle
		B1		Centre (1, -1)
		B1	3	Passing through (0, 0)
	(ii)	B1		Sketch a concentric circle
		B1		Inside (i) and touching axes
		B1	3	Shade between the circles
5.	(i)	B1	1	Show given answer correctly

	(ii)	M1		Attempt to solve quadratic equation or substitute $x + iy$ and equate real and imaginary parts
	$-1\pm i\sqrt{3}$ (iii)	A1 A1 B1	3	Obtain answers as complex numbers Obtain correct answers, simplified Correct root on x axis, co-ords. shown
		B1 B1		Other roots in 2 nd and 3 rd quadrants
			3 7	Correct lengths and angles or co- ordinates or complex numbers shown
6.	(i)	B1		Correct expression for u_{n+1}
		M1		Attempt to expand and simplify
	$u_{n+1}-u_n=2n+4$	A1	3	Obtain given answer correctly
	(ii)	B1		State $u_1 = 4$ (or $u_2 = 10$) and is
		M1		divisible by 2 State induction hypothesis true for
		M1		<i>u</i> _n
		A1		Attempt to use result in (ii)
		A1	5	Correct conclusion reached for u_{n+1}
			8	Clear, explicit statement of induction conclusion
7.	(i) $\alpha + \beta = -5$ $\alpha\beta = 10$	B1 B1	2	State correct values
	(ii) $\alpha^2 + \beta^2 = 5$	M1		Use $(\alpha + \beta)^2 - 2\alpha\beta$
		A1	2	Obtain given answer correctly, using value of -5
	(iii)	B1		Product of roots = 1
		M1		Attempt to find sum of roots
		A1		Obtain $\frac{5}{10}$ or equivalent
	$x^2 - \frac{1}{2}x + 1 = 0$	B1ft	4	Write down required quadratic
			8	equation, or any multiple.

8.	(i)	M1		Factor of $r!$ or $(r + 1)!$ seen
		A1		Factor of $(r+1)$ found
	$(r+1)^2 r!$	A1	3	Obtain given answer correctly
	(ii)	M1		Express terms as differences using
		A1		(i)
		M1		At least 1 st two and last term correct
	(n+2)! - 2!	A1	4	Show that pairs of terms cancel
	(iii)	B1ft	1	Obtain correct answer in any form
			8	Convincing statement for non- converging, ft their (ii)
9.		M1		For at least two correct images
	$ (i) \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \end{pmatrix} $	A1	2	For correct diagram, co-ords.clearly written down
	(ii) 90° clockwise, centre origin	B1 B1		Or equivalent correct description
	$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$	B1	3	Correct matrix, not in trig form
	(iii) Stretch parallel to x-axis, s.f. 3	B1 B1		Or equivalent correct description, but must be a stretch for 2 nd B1
	$\left(\begin{array}{c} 3 & 0 \\ 0 & 1 \end{array}\right)$	B1 B1	4 9	Each correct column

10.	(i)	M1		Show correct expansion process for
		M1		3 x 3
	$\Delta = \det \mathbf{D} = 3a - 6$	A1		Correct evaluation of any 2 x 2 det
		M1		Obtain correct answer
		A1		Show correct process for adjoint
		B1		entries
	$\mathbf{D}^{-1} = \frac{1}{\Delta} \begin{pmatrix} 3 & -2 & 4 \\ -3 & a & -2a \\ -3 & a & a & -6 \end{pmatrix}$ (ii) $\frac{1}{\Delta} \begin{pmatrix} 5 \\ 2a & -9 \\ 5a & -15 \end{pmatrix}$	A1	7	Obtain at least 4 correct entries in
				adjoint
		M1		Divide by their determinant
		A1A1A1 ft all 3	4	Obtain completely correct answer
			11	
				Attempt product of form $\mathbf{D}^{-1}\mathbf{C}$, or eliminate to get 2 equations and solve Obtain correct answers, ft their inverse